PersamaanLinear Dua Variabel Persamaan linear dua variabel adalah sistem persamaan dengan variabel berjumlah dua berpangkat satu. Bentuk umumnya: ax + by = c. A dan b adalah bilangan bulat bukan
Sistempersamaan linear dua variabel (spldv) merupakan suatu sistem yang terdiri atas dua persamaan linier yang mempunyai dua variabel. Substitusi nilai x atau y yang diperoleh pada langkah ketiga pada salah satu persamaan untuk mendapatkan nilai variabel yang belum diketahui. Penyelesaiannya adalah (x,y) Baca juga: Kerajaan sriwijaya
Dansetelah itu dapatkan nilai dari variabel yang belum diketahui pada hasil langkah sebelumnya. Contoh Soal SPLDV Dengan Metode Substitusi. Dari metode sistem pada persamaan linear dua variabel yang ke 4 ini yaitu merupakan metode grafik. Dibawah ini ada beberapa langkah - langkahnya untuk menyelesaikan SPLDV dengan cara metode grafik
SistemPersamaan Linear dua Variabel ini sering dijumpai dalam permasalahan sehari-hari. SPLDV dapat diselesaikan dengan 3 cara yaitu: Diketahui sistem persamaan linear sebagai berikut. 3x + 5y = 21. 2x - 7y = 45. Carilah nilai x dan y yang memenuhi persamaan di atas. Jawab: 3. Carilah nilai x dan y dari persamaan berikut. 3x + 2y = 10. 9x
Dalamkehidupan sehari-hari, sistem persamaan linear dua variabel bisa digunakan untuk menentukan harga barang, mencari keuntungan penjualan, dan lainnya. Berdasarkan buku Ayo, Belajar Persamaan, Pertidaksamaan, dan Sistem Persamaan Linear! karya Mirna Indrianti, ada tiga cara yang biasa digunakan untuk menyelesaikan permasalahan persamaan
VuB2LT8. Pada materi terdahulu telah diperlajari tentang persamaan linier dua variabel, yaitu persamaan yang mengandung dua variabel dengan pangkat tertinggi satu. Bentuk umumnya ax + by + c = 0. Dalam hal ini a dan b masing-masing dinamakan koefisien dari x dan y, sedangkan c dinamakan konstanta. Penyelesaian dari persamaan linier dua variabel ax + by + c = 0 ini, merupakan pasangan berurutan x, y yang memenuhi persamaan tersebut. Pasangan berurutan ini jika digambar kedalam grafik Cartesius, merupakan titik-titik yang tak hingga jumlahnya, sehingga membentuk suatu garis lurus. Adapun sistem persamaan linier dua variabel adalah beberapa persamaan linier yang membentuk suatu sistem, sehingga penyelesaiannnya merupakan titik potong seluruh garis-garis dari persamaan linier tersebut Metoda menentukan himpunan penyelesaian sistem persamaan linier ini adalah 1 Metoda grafik 2 Metoda eliminasi 3 Metoda substitusi Berikut ini akan diuraikan penjelasan ketiga metoda di atas Metoda Grafik Misalkan diketahui sistem persamaan linier Maka Penyelesaiannya merupakan titik potong kedua garis linier itu. Sehingga dengan metoda grafik, kedua persamaan linier itu harus digambar pada grafik Cartesius. Untuk lebih jelasnya akan diuraikan pada contoh berikut ini 01. Dengan metoda grafik, tentukanlah penyelesaian dari sistem persamaan linier 2x + 5y = 20 dan x β y = 3 Jawab Dengan metoda grafik dapat diketahui bahwa terdapat tiga macam kemungkinan penyelesaian sistem persamaan linier, yaitu Untuk lebih jelasnya ikutilah contoh berikut ini 02. Diketahui sistem persamaan linier ax + 2y = 5 dan 15x β 5y = 14. Tentukanlah nilai a agar sistem persamaan linier tersebut tidak mempunyai titik penyelesaian Jawab Metode Substitusi Penyelesaian sistem persamaan linier dengan metoda substitusi, dilakukan dengan cara βmenggantiβ salah satu variabel ke dalam variabel yang lain. Untuk lebih jelasnya ikutilah contoh berikut ini 03. Dengan metoda substitusi, tentukanlah penyelesaian dari sistem persamaan linier 3x + y = 3 dan 2x β 3y = 13 Jawab 3x + y = 3 y = 3 β 3x disubstitusikan ke 2x β 3y = 13 diperoleh 2x β 33 β 3x = 13 2x β 9 + 9x = 13 11x = 13 + 9 11x = 22 x = 2 sehingga y = 3 β 32 = 3 β 6 = β3 Jadi penyelesaiannya {2, β3 04. Dengan metoda substitusi, tentukanlah penyelesaian dari sistem persamaan linier 5x β 2y = 1 dan 2x + 3y = 8 Jawab Metoda Eliminasi Penyelesaian sistem persamaan linier dengan metoda eliminasi, dilakukan dengan cara βmenghilangkanβ salah satu variabel sehingga diperoleh nilai variabel yang lain. Untuk lebih jelasnya ikutilah contoh berikut ini 05. Dengan metoda eliminasi, tentukanlah penyelesaian dari sistem persamaan linier 2x β 3y = 2 dan 5x + 2y = β14 Jawab 06. Dengan metoda eliminasi, tentukanlah penyelesaian dari sistem persamaan linier 6x + y = 11 dan x + 3y = β1 Jawab
Sistem persamaan adalah himpunan persamaan yang saling berhubungan. Persamaan linear adalah persamaan yang memuat variabel dengan pangkat tertinggi sama dengan satu. Persamaan linear dua varibel berarti persamaan yang memuat dua varibel dengan pangkar tertinggi 1. Sehingga sistem persamaan linear dua variabel dapat dipahami sebagai himpunan persamaan-persamaan linear yang memiliki dua variabel. Penyebutan nama sistem persamaan linear dua variabel sering disingkat dengan SPLDV. Sebuah persamaan linear memiliki komponen yang meliputi variabel, koefisien, dan konstanta. Koefisien dan variabel terletak berdampingan dengan letak koefisien di depan variabel. Konstanta pada persamaan linear adalah bilangan yang tidak diikuti oleh variabel. Contoh persamaan linear dua variabel adalah 3x + 2y = 12. Baca Juga Himpunan dan Diagram Venn Bagaimana cara menentukan solusi dari sistem persamaan linear dua variabel? Apa saja cara untuk menyelesaikan sistem persamaan linear dua variabel? Sobat idschool dapat mencari tahu jawabannya melalui ulasan cara menentukan solusi dari sistem persamaan linear dua varibel di bawah. Table of Contents Bentuk Persamaan Linear Cara Menyelesaikan Sistem Persamaan Linear Dua Variabel Metode Substitusi Metode Eliminasi Cara Gabungan Eliminasi-Substitusi untuk Menyelesaikan Sistem Persamaan Linear 2 Variabel Metode Grafik Contoh Soal SPLDV dan Pembahasan Contoh 1 β Soal Certia yang Sesuai dengan Sistem Persamaan Linear Dua Variabel Contoh 2 β Soal Sistem Persamaan Linear Bentuk Persamaan Linear Persamaan linear dua variabel memiliki karakteristik memiliki sebagai persamaan dengan pangkat tertinggi dari semua variabel dalam persamaan adalah satu. Perhatikan persamaan yang bukan SPLDV dan persamaan yang merupakan SPLDV berikut. Contoh bukan SPLDV2x2 + 5x = 141/x + 1/y = 2 Contoh SPLDV2x + 5y = 143a + 4b =24q + r = 3 Bentuk umum sistem persamaan linear dua variabel SPLDVax + by = cdx + ey = fHasil penyelesaian SPLDV dinyatakan dalam pasangan terurut x, y Cara Menyelesaikan Sistem Persamaan Linear Dua Variabel Terdapat beberapa cara/metode untuk menyelesaikan permasalahan terkait Sistem Persamaan Linear Dua Variabel SPLDV. Empat metode yang dapat digunakan untuk menyelesaikan SPLDV adalah sebagai berikut. SubstitusiEliminasiGabunganGrafik Melalui halaman ini, sobat idschool dapat mengetahui proses pengerjaan SPLDV dengan berbagai metode. Untuk mengetahui perbedaan setiap metode, akan disajikan dalam pengerjaan sebuah soal dengan keempat metode tersebut. Permasalahan dalam SPLDV yang akan diselesaikan adalah dua bersamaan berikut.i 2x + 3y = 8ii 3x + y = 5 Metode Substitusi Ada beberapa langkah yang perlu dilakukan untuk menyelesaikan SPLDV dengan metode substitusi. Berikut ini adalah langkah-langkah menyelesaikan SPLDV dengan metode substitusi. Langkah-langkah menyelesaikan SPLDV dengan metode substitusi Mengubah salah satu persamaan menjadi bentuk y = ax + b atau x = cy + d [TRIK!! Pilih persamaan yang paling mudah untuk diubah]Substitusi nilai x atau y yang diperoleh pada langkah pertama ke persamaan yang lainnyaSelesaikan persamaan untuk mendapatkan nilai x atau ySubstitusi nilai x atau y yang diperoleh pada langkah ketiga pada salah satu persamaan untuk mendapatkan nilai dari variabel yang belum diketahui. Penyelesaiannya adalah x, y Penyelesaian permasalahan SPLDV dengan metode substitusi Langkah 1 mengubah salah satu persamaan menjadi bentuk y = ax + b atau x = cy + dMengubah persamaan ii ke dalam bentuk y = ax + b3x + y = 5 β y = 5 β 3x Langkah 2 substitusi y = 5 β 3x pada persamaan 2x + 3y = 82x + 35 β 3x = 8 Langkah 3 selesaikan persamaan sehingga diperoleh nilai x2x + 35 β 3x = 82x + 15 β 9x = 8β7x = β7x = 1 Langkah 4 substitusi nilai x = 1 pada persamaan 2x + 3y = 8 pilih salah satu, hasilnya akan sama2x + 3y = 821 + 3y = 83y = 8 β 23y = 6 β y = 2 Langkah 5Diperoleh penyelesaian dari sistem persamaan linear dua varibael dalam bentuk adalah x, y. Hasil yang diperoleh adalah x = 1 dan y = 2, jadi penyelesaiannya SPLDV pada soal yang diberikan dalah 1, 2 Baca Juga Kumpulan Soal UN SMP β SPLDV Metode Eliminasi Cara kedua untuk menyelesaikan SPLDV adalah menggunakan metode eliminasi. Secara ringkas, dalam metode eliminasi adalah menghilangkan salah satu variabel untuk mendapatkan nilai dari satu variabel lainnya. Langkah-langkah menyelesaikan SPLDV dengan metode eliminasi Menyamakan salah satu koefisien dari variabel x atau y dari kedua persamaan dengan cara mengalikan konstanta yang variabel yang memiliki koefisien yang sama dengan cara menambahkan atau mengurangkan kedua kedua langkah untuk mendapatkan variabel yang belum adalah x, y Penyelesaian permasalahan dengan metode eliminasi diberikan seperti langkah-langkah di bawah. Langkah 1 menyamakan salah satu koefisien dari variabel x atau y dari kedua persamaan dengan cara mengalikan konstanta yang sesuai. Langkah 2 hilangkan variabel yang memiliki koefisien yang sama dengan cara menambahkan atau mengurangkan kedua persamaan. Langkah 3 ulangi kedua langkah untuk mendapatkan variabel yang belum diketahui Langkah 4 penyelesaiannya adalah x, y β Hasil yang diperoleh x = 1 dan y = 2, jadi penyelesaiannya adalah 1, 2. Baca Juga Aritmetika Sosial Cara Gabungan Eliminasi-Substitusi untuk Menyelesaikan Sistem Persamaan Linear 2 Variabel Metode gabungan merupakan penggabungan langkah dari metode substitusi dan eliminasi. Metode eliminasi mempunyai langkah awal yang cukup mudah dan singkat. Sedangkan metode substitusi mempunyai cara akhir yang baik. Kedua metode tersebut digabungkan untuk mempermudah pengerjaan. Metode gabungan merupakan metode yang sering digunakan dalam menyelesaikan SPLDV karena dinilai lebih ringkas dan baik. Langkah-langkah menyelesaikan SPLDV dengan metode gabungan Cari nilai salah satu variabel x atau y dengan metode eliminasiGunakan metode substitusi untuk mendapatkan nilai variabel kedua yang belum diketahuiPenyelesaian sistem persamaan linear dua varibel berupa bentuk x, y Contoh penyelesaian permasalahan SPLDV dengan metode gabungan eliminasi β substitusi Langkah 1 mencari nilai x dengan metode eliminasi Langkah 2 substitusi nilai x = 1 pada persamaan 2x + 3y = 8 pilih salah satu, hasilnya akan sama2x + 3y = 821 + 3y = 83y = 8 β 23y = 6y = 6/3 = 2 Langkah 3 penyelesaiannya adalah x, y β Hasil yang diperoleh x = 1 dan y = 2, jadi penyelesaiannya adalah 1, 2. Metode Grafik Penyelesaian SPLDV dengan metode grafik dilakukan dengan menentukan koordinat titik potong dari kedua garis yang mewakili kedua persamaan linear. Sebelumnya, sobat idschool perlu belajar mengenai cara menggambar garis pada persamaan linear terlebih dahulu. Langkah-langkah menyelesaikan SPLDV dengan metode grafik Menggambar garis yang mewakili kedua persamaan dalam bidang kartesiusMenemukan titik potong dari kedua grafik tersebutPenyelesaiannya adalah x, y. Berikut ini penyelesaian SPLDV dengan metode grafik. Langkah 1 menggambar kedua grafik Menentukan titik potong pada kedua sumbu x dan y dari kedua persamaan. Gambar garis lurus untuk kedua persamaan linear dalam bidang kartesius diberikan seperti gambar di bawah. Langkah 2 menemukan titik potong dari kedua grafik tersebut. Langkah 3 penyelesaiannya adalah x, y Berdasarkan gambar dapat diketahui bahwa titik potong berada pada x = 1 dan y = 2, jadi penyelesaiannya adalah 1, 2. Dengan metode grafik, diperoleh pula hasil yang sama dengan metode substitusi, metode eliminasi, dan metode gabungan substitusi β eliminasi. Baca Juga Persamaan Linear Satu Variabel Contoh Soal SPLDV dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 β Soal Certia yang Sesuai dengan Sistem Persamaan Linear Dua Variabel Diketahui sistem persamaan 3x + 2y = 8 dan x β 5y = β37. Nilai 6x + 4y adalah β¦.A. β30B. β16C. 16D. 30 Pembahasan Dari persamaan x β 5y = β37 dapat diperoleh persamaan yang ekuivalen yaitu x = 5y β 37. Substitusi persamaan x ke dalam persamaan 3x + 2y = 8 untuk mendapatkan nilai y. 35y β 37 + 2y = 815y β 111 + 2y = 817y = 8 + 111y = 119 17y = 7 Selanjutnya, substitusi nilai y = 7 pada persamaan x = 5y β 37 untuk mendapatkan nilai x. x = 5y β 37x = 5Γ7 β 37= 35 β 37= β2 Jadi, nilai 6x + 4y = 6Γβ2 + 4Γ7 = β12 + 28 = 16 Jawaban C Contoh 2 β Soal Sistem Persamaan Linear Seorang tukang parkir mendapat uang sebesar dari 3 buah mobil dan 5 buah motor, sedangkan dari 4 buah mobil dan 2 buah motor ia mendapat Jika terdapat 20 mobil dan 30 motor, banyak uang parkir yang ia peroleh adalah β¦.A. Pembahasan Misalkan Tarif parkir per mobil = xTarif parkir per motor = y Berdasarkan cerita pada soal, dapat diperoleh model matematika seperti di bawah. 3x + 5y = + 2y = Kalikan persamaan pertama dengan 4 empat dan persamaan kedua dengan 3 tiga. Hal ini digunakan untuk membuat salah satu variabelnya sama, sehingga bisa saling mengurangi. Berdasarkan perhitungan di atas, diperoleh nilai y = Substitusi nilai y = pada salah satu persamaan yang diketahui, misalnya 3x + 5y = pemilihan persamaan yang berbeda akan tetap menghasilkan hasil akhir sama. 3x + 5y = + 5 = = β 3x = 3 = Hasil yang diperoleh adalah Uang parkir mobil = x = parkir motor = y = Jadi, uang yang diperoleh untuk 20 mobil dan 30 motor adalah= 20 x + 30 x + = Jawaban C Demikianlah tadi ulasan materi sistem persamaan linear dua variabel atau yang sering disingkat sebagai SPLDV yang penyelesaiannya dapat dilakukan melalui metode substitusi, eliminasi, gabungan eliminasi-substitusi, dan grafik. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat! Bava Juga Sistem Persamaan Linear Tiga Variabel β SPLTV
diketahui sistem persamaan linear dua variabel